
Journal of Pure and Applied Algebra 34 (1984) 147- 153 

North-Holland 
147 

TORSION IN THE CHOW GROUP OF CODIMENSION TWO: 
THE CASE OF VARIETIES WITH ISOLATED SINGULARITIES 

Albert0 COLLINO* 
Istituw di Geometria, Universita’, Via Principe Amedeo 8, 10123 Turino, Italia 

Comrwnicated by E.M. Frkdlander 

Received 6 December 1983 

One of the most interesting applications of the recent results of Merkuriev and 
Suslin on K, is 

0.1. Theorem [IO], [7]. Let X be a non-singular quasi-projective variety defined over 
an algebmica/Iy closed field, let n be an integer prime to the characteristic, then 
,$H2(X) is finite. 

Here CH2(X) denotes the group of codimension 2 cycles modulo rational 
equivalence and JH2(X) is the kernel of the multiplication by n. Our aim is to 
extend the theorem to the case of varieties with isolated singularities. 

To begin with one has to decide what the second Chow group should be in this 
case. Let Y be an irreducible quasi-projective variety with finitely many singular 

points y1, y2, l -- ,vn; we write Yi = set of points (i.e. irreducible cycles) cf 
codimension i in Y and Y’={ye Y:{y,,y2,...,y,)np=0}. Let 

c+‘= JJ zy. 
_YE Y,' 

We define R+’ to be the subgroup of C+’ generated by the elements of the form 
(s, f), where SE Yj’_ I, f is an element of k(s)*, the group of invertible elements in 
the function field of s, and (s, f) denotes the cycle ((f )O - (f)J computed on Y. 
We define CH2( Y) = C+2/R+2. By [5, (6.2)] CH2(Y)==G2&Y, where K,Y is the 
Grothendieck group of vector bundles on Y and G’K,Y is thie second graded group 
associated with a natural topological filtration on K,Y. We shall prove 

0.2. Theorem. JH2( Y) is finite. 

Let X be obtained from Y by identifying all the singular points to one point <vo, 
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then CH2( Y) = CH2(X), simply by definition, while CH’(X) = H2(X, K2), [5]. To 
prove Theorem 0.2 we shall in fact establish the equivalent 

0,3. Theorem. Let X be a quasi-projective variety with one singular point at most, 
let 1 be a prime diSfcrent from the characteristic of the base field, then I~n H2(X, K2) 
is finite for every natural number v. 

We fix an algebraiically closed field as ground field for all varieties considered 
herein. We shall use the standard notations of [2] and [?I, in particular $” shall 
denote the &ale sheaf of /’ roots of one tensored 
we write sometime n:/ or m(v) instead of I”. 

with itself n-times. For simplicity 

Let X be a variety, x0 a distinguished closed 
non-singular, there is an exact sequence [5]: 

point on it such that X- {xg } is 

(GW (ix)*k(x)* a_+ II (ix>* G -+O. 
I’ XE X; 

Also the following Gersten complex is exact over X- {xg } by [ 111: 

CR) 10-+K2X-+(iX)*K2k(X)z u (i&k(x)* -2 JJ (i,)*Z,-+O. 
XEX, XEXZ 

I-et F be the subsheaf of UXEX, (&k(x)* generated by T((ix)*K2k(X)) and by 

Ii e rEX. (i,),k(x)*. We let Gzx be the kernel of T in the complex 

(I-4 0-)G2x -+(ix)*K2 k(X) --% IF -% u (i,)J,-+O. 
xfzx; 

Following [9] we have 

1.1. Theorem. (a) Sequence (L) is exact. 
(b) There is a map f : Kzx -+ G2X which is an isomorphism over X - (x0), 

(c) F is an acyclic sheaf. 

roof, (3) Surjectivity of a follows from the surjectivity of a in (CR*). At x0 we 
have Image T= Ker a by definition of F; at x#x, we use the exactness of (GR) to 

then z E Image T locally at x. 
(Xx0)+ (ix)*K2 k(X) and 

i : Xg &M(x)*-+ 11 (i,)&(x)* 
XEX, 

ap:;. Since iR = Tj, there is a map of complexes (GR*)-+(L) which 
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induces the morphism f: Kzx -+GIX; f is an isomorphism over X- {x0} because 
GR is exact on the smooth locus. 

(c) (GR*) is an acyclic resolution of K 2x, [5). On the other hand H2(X, Kzx)q 

H2W,G2x) by (W, hence HOW, UXEX; (ix)*Z,)-+H2(X, G2X) is surjective. The 
acyclicity of F follows from this rema;k by looking at the spectral sequence of 
hypercohomology associated with (L). 

1.2. Corollary. H2(X, K2X)q H2(X, G2X). 

In order to prove Theorem 0.3 we shall prove 

1.3. Theorem. Iv H2(X, G2X) is finite. 

1.4. Following Bloch [2, (5.4)] we consider the diagram: 

o- mG2 - M,,,~2MX)) --- f?J 
h 0 

I I Tl 
0- G2 - ix*w2 k(X)) -F 

o- 1; - ix*uc?k.px~~ -y iq, 

G2/m - ix*(K2 k(X)/m) ------+ F/m 

where, according to our convention we set m= I”. 411 columns and row in the 

diagram are exact but possibly for the first and last row. 

has cohomological ditnension 5 1. 



it suffices to prove that 1: is acyclic. Note first the inclusion Tc+,F, because the 
first row in the diagram is exact on the left. Since Fc+ UxeX I i,,(k(x)*), there is an 

inclusion 

Now i is an isomorphism over X- {xg), because Gzx = Kzx there, hence in the 
following exact sequence the cokernel C is skyscraper, supported at x0: 
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PCQFL Let T be the sheaf defined by exactness of the sequence 

O-+T+ u iJ~,)-%-+O. 
xex, 

To prove thle acyclicity of T it suffices to show that g is surjective on global sec- 
tions. Such $llurjectivity can be verified in a standard way noting that the domain of 
g is a flasque sheaf, while @(X, C) = CO, the stalk at ~0, 

1.6. Lemma. There is an exact sequence 

Proof. Use the sequence of cohomology associated with the first column in the 
diagram. 

1.7. In order to prove that JY2(X,Gzrt) is finite we shall show that 
H ‘(X, Gzx/mGzx) is finite. 

Looking ‘at the last row in the diagram, we write St”), or birefly S, the sheaf im- 
age of G2/m(v)Gt in iX,(K2k(X)/m(v)K2k(X)). We set p : G,/m(v)G2+S(“) and 
j: S(v) -+ix,(K2 k(X)/m(v)& k(X)), the obvious maps. 

1.8. Lemma. H’(X,G-&m(v)Gzx)~H’(X, S). 

lhof. The kernel of p is skyscraper, supported at x0, because K2 =G2 over 
X- (xg) and 2/m-+ix& k(X)/m) is injective there, [2, (5.4)]. 

We need Hater 

reposition. O--4-+ix,(K2k(X)/m)-+ /m is an exact sequence. 

Fix any point y E X, let a E (ixw(K2k(X)/m),, with d(a) = 0. By exactness of 
cdumn in the diagra a = qo(b), b E (ix+K2 k(X)jy, while the hypothesis 

eans T(tj) = mc, CE By exactness of the third row O=dT(b) = 
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a(mc) = ma(c), hence a(c) = 0 so that c = T(g), g E (i,&&k(X)))_,,. Therefore 
T(mg) = T(b), hence (b - mg) E (G,), and jpq(b - mg) = qO(b), i.e. a E S_,,. 

Following Bloch’s program for the non-singular case [3] we use no*v the sheaves 
q(pz2). They are the sheaves on X, in the Zariski topology, which are associated 

to the presheaf U-+Hi(U, pz2), [4]. Let R be the local ring O,,, let i : Sp R-+X 
be the natural map, let Aq = i*(i-‘Hq(p$2). 

1.10. Proposition. There is an exact sequence 

(+) 0-+Hq(p@2)+Aq+ tn u ix,Hq- ‘(k(x), &f)‘)-+ JJ i,,ffq-2(k(x), &f”)-+... .._ 

and Aq is acyclic. 

Proof. The proof given for (1.10) in [6] applies also here. 

By definition of HQ the Leray spectral sequence associated 
topoi z : Xet --+Xzar is 

with the morphism of 

Now HP(X, Hq)=O, p>q, because (+) is an acyclic resolution, hence Ei’--+ 
HA(X,pz2) is an inclusion, therefore Ej2 is finite, being contained in a finite 
group. To conclude the proof of 1.7 we show 

1.11. Proposition. There is a surjective map 

H’(X, H2(~$))-H’(X, S). 

Proof. We have a diagram 

O-H2(~~2) ) A2 ti u i.,,(k(x)*/m) 

I 

v E A-\’ 

cy 

I 

B Y 

0 -----+ S -------+ ix& k(X)/rrr) -------+ F/l?1 

The map y comes from the inclusion U\+. k’(x)*~,F; the map /3 is just the 
restriction map H;(Sp R)-+ H,?,(Sp k(X)), recalling the basic Merkuriev-Suslin 
isomorphism &k(X)/m’H2(k(X),p$f2). The map cy is defined using the esact- 
ness of the bottom row (Proposition 1.9). By the results of [3] and [7] for the non- 
singular case WC know that CT is an isomorphism on X - {xl>, hence the Lokernel of 
a is acyclic. 
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2. 

Using the arguments above we recover here a proposition of Levine [8], which ex- 
tends a theorem of Roitman. 

2,P. Proposit~ow. If Y is a complete surface with isolated singularities there is an 
isomorphism CH2( Y)(l)+Alb(Y’)(l), where Y’ is the desingularization of Y and 
CH2( Y)(l) is the subgroup of elements of order a power of 1. 

Proof. As before let X be the variety obtained from Y by 
points, let aJso Y” be the normalization of Y, hence 
CH’(X)(l)~ Alb( Y’)(l). 

Using the proper base change theorem and the Leray 

~~(X,Z/l”)~H,:(Y,Z/lv)lHe~~(Y”,~/lv), 

identifying all the singular 
of X. We have to show 

spectral sequence one has 

hence the 
sequence 

the kernel 

same isomorphisms hold with 22, coefficients. Further in the exact 

a>-,T-,H~(Y”,Z,)~H:(Y’,B,)-,O 

T is torsion, because the intersection matrix of the components of the 
exceptional divisor over a normal singularity is negative definite. Recall (see e.g. [7, 
I .2( 13)]) the exact sequence 

1 f W is an irreducible surface, then HA( I+< ZJtors = 0; therefore HA( Y “, Z,)@Q,/Z, = 
HA( Y”, Q/Z& It follows that H,:( Y’, Q/Z,(2)) = HA(X, U&/Z,(2)), where (2) in- 
dicates the Tate twist. 

There is a diagram 

H’(X, H2(p~2))~ HA(X, /_I?~) 

f _______1 
H’(X, S(“‘) - PH2(X9 - ,I.H’( Y’, K2& 

ere i is an isomorphism because 3 =O on a surface, since the cohomology 
affine variety vanish in ension greater than the dimension of the 

ing direct limit one has 
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/ 

f 

Alb( Y’)(I) 

lim H1 (St”)) - CH2(X)(I) - CH’( Y’)(I) 

Here u is the Albanese map; h is defined so that the diagram is commutative; f= ab, 
[I]. Therefore h is an isomorphism because f is an isomo, phism, [2, (5.5)]. 
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